SEMMTECH
SC2620 Dual 2A, 30V Step-down Regulator with
Programmable Frequency up to 1.4 MHz
POWER MANAGEMENT

Description

The SC2620 is a constant frequency dual current-mode switching regulator with integrated 2.3A, 30V switches. Its switching frequency can be programmed up to 1.4 MHz per channel. Due to the SC2620's high frequency operation, small inductors and ceramic capacitors can be used, resulting in very compact power supplies. The two channels of the SC2620 operate at 180° out of phase for reduced input voltage ripples.

Separate soft start/enable pins allow independent control of each channel. Channel 1 power good indicator can be used for output start up sequencing to prevent latch-up.

Current-mode PWM control achieves fast transient response with simple loop compensation. Cycle-by-cycle current limiting and hiccup overload protection reduce power dissipation during overload.

Features

- Wide Input Voltage Range 2.8 V to 30 V
- Up to $1.4 \mathrm{MHz} /$ Channel Programmable Switching Frequency
- Current-mode Control
- Out of Phase Switching Reduces Ripple
- Cycle-by-cycle Current-limiting
- Independent Shutdown/soft-start Pins
- Independent Hiccup Overload Protection
- Channel 1 Power Good Indicator
- Two 2.3A Integrated Switches
- Thermal Shutdown
- Thermally Enhanced S0-16 Lead Free Package
- Fully WEEE and RoHS Compliant

Applications

- XDSL and Cable Modems
- Set-top Boxes
- Point of Load Applications
- CPE Equipment
- DSP Power Supplies

Typical Application Circuit

CH1 : OUT1 Voltage, 2V/div
CH2 : OUT2 Voltage, 1V/div CH3 : SS2 Voltage, 2V/div

Figure 1(a). $550 \mathrm{kHz} 9 \mathrm{~V}-16 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ to 3.3 V and 1.2 V Stepdown Converter.

Figure 1(b). $\mathrm{V}_{\text {IN }}$ Start-up Transient ($\mathrm{I}_{\text {out } 1}=1.5 \mathrm{~A}, \mathrm{I}_{\text {out } 2}=$ 0.8 A). Channel 2 start is delayed until Channel 1 reaches regulation.

POWER MANAGEMENT

Absolute Maximum Ratings
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.

Parameter	Symbol	Max	Units
Input Voltage	V_{IN}	-0.3 to 32	V
Boost Pin	$\mathrm{V}_{\mathrm{BST}}$	42	V
Boost Pin Above SW	$\mathrm{V}_{\mathrm{BST}}-\mathrm{V}_{\mathrm{SW}}$	24	V
PGOOD1 Pin Voltage	$\mathrm{V}_{\text {PGood } 1}$	$\mathrm{~V}_{\text {IN }}$	V
SS Pins	V_{SS}	3	V
FB Pins	V_{FB}	-0.3 to V_{IN}	V
SW Voltage	V_{SW}	-0.6 to $\mathrm{V}_{\text {IN }}$	V
Operating Ambient Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient	θ_{JA}	31	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	θ_{JC}	3.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	$\mathrm{T}_{\text {LEAD }}$	-65 to +150
Lead Temperature (Soldering) 10 sec	$\mathrm{ESD}^{\circ} \mathrm{C}$		
ESD Rating (Human Body Model) (Note 1)	300	${ }^{\circ} \mathrm{C}$	

Note 1: This device is ESD sensitive. Standard ESD handling precaution is required.

Electrical Characteristics

Unless specified: $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<105^{\circ} \mathrm{C}, \mathrm{R}_{\text {OSC }}=12.1 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {BOOST }}=8 \mathrm{~V}$

Parameter	Conditions	Min	Typ	Max	Units
Input Voltage Range		2.8		30	V
$\mathrm{~V}_{\text {IN }}$ Start Voltage		2.45	2.62	2.78	V
$\mathrm{~V}_{\text {IN }}$ Start Hysteresis			75		mV
Quiescent Current	Not switching, PGOOD1 Open		3.5	5	mA
Shutdown Current	$\mathrm{V}_{\mathrm{SS} 1}=\mathrm{V}_{\mathrm{SS} 2}=0$, PGOOD1 Open		40	60	$\mu \mathrm{~A}$
Feedback Voltage		0.980	1.000	1.020	V
Feedback Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 30 V		0.005		$\% / \mathrm{V}$
FB Pin Input Bias Current	$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}, \mathrm{~V}_{\text {COMP }}=1.5 \mathrm{~V}$		-15	-30	nA
Error Amplifier Transconductance			280		$\mu \Omega^{-1}$
Error Amplifier Open-loop Gain			53		dB
COMP Source Current	$\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {ComP }}=1.5 \mathrm{~V}$		20		$\mu \mathrm{~A}$

POWER MANAGEMENT

Electrical Characteristics (Cont.)

Unless specified: $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}<\mathrm{T}_{J}<105^{\circ} \mathrm{C}, \mathrm{R}_{\text {OSC }}=12.1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\text {BOOST }}=8 \mathrm{~V}$

Parameter	Conditions	Min	Typ	Max	Units
COMP Sink Current	$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {COMP }}=1.5 \mathrm{~V}$		20		$\mu \mathrm{A}$
COMP Pin to Switch Current Gain			8		A/V
COMP Switching Threshold		0.7	1.1	1.3	V
COMP Maximum Voltage	$\mathrm{V}_{\mathrm{FB}}=0.9 \mathrm{~V}$		2.4		V
Channel Switching Frequency		1.2	1.4	1.6	MHz
Maximum Duty Cycle	(Note 3)	80	90		\%
Switch Current Limit	(Notes 2 and 4)	2.3	3.2		A
Switch Saturation Voltage	$\mathrm{I}_{\text {sw }}=-2 \mathrm{~A}$		0.3		V
Switch Leakage Current				10	$\mu \mathrm{A}$
Minimum Boost Voltage	$\mathrm{I}_{\text {sw }}=-2 \mathrm{~A}($ Note 2)		1.8	2.5	V
Boost Pin Current	$\mathrm{I}_{\text {sw }}=-0.5 \mathrm{~A}$		20		mA
	$\mathrm{I}_{\text {sw }}=-2 \mathrm{~A}$		60		mA
Minimum Soft-Start Voltage to Exit Shutdown	SS1 Tied to SS2	0.2	0.4	0.7	V
Soft-start Charging Current	$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$		2		$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{ss}}=1.5 \mathrm{~V}$		1.8		$\mu \mathrm{A}$
Soft-start Discharging Current	$\mathrm{V}_{\text {ss }}=1.5 \mathrm{~V}$		0.8		$\mu \mathrm{A}$
Minimum Soft-start Voltage to Enable Overload Shutoff	$\mathrm{V}_{\text {ss }}$ Rising		2		V
FB Overload Threshold	$\mathrm{V}_{\mathrm{SS}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}$ Falling		0.7		V
Soft-start Voltage to Restart Switching After Overload Shutoff	$\mathrm{V}_{\text {ss }}$ Falling	0.7	1	1.3	V
Power Good Threshold Below FB1	$\mathrm{V}_{\text {FB1 }}$ Rising	80	100	120	mV
Power Good Output Low Voltage	$\mathrm{V}_{\text {FB1 }}=0.8 \mathrm{~V}, \mathrm{I}_{\text {PGOOD1 }}=250 \mu \mathrm{~A}$		0.2	0.4	V
Power Good Pin Leakage Current	$\mathrm{V}_{\text {PGOOD } 1}=5 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
Thermal Shutdown Temperature			155		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis			10		${ }^{\circ} \mathrm{C}$

Note 2: Guaranteed by design, not 100% tested in production.
Note 3: The maximum duty cycle specified corresponds to 1.4 MHz switching frequency. Duty cycles higher than those specified can be achieved by lowering the operating frequency.
Note 4: Switch current limit does not vary with duty cycle.

Pin Configuration

(16 Pin SOIC-EDP) Underside metal must be soldered to ground.

Ordering Information

Part Number	Package
SC2620SETRT ${ }^{(1)(2)}$	SOIC-16 EDP
SC2620EVB	Evaluation Board

Notes:
(1) Only available in tape and reel packaging. A reel contains 2500 devices.
(2) Lead free product. This product is fully WEEE and RoHS compliant.

Pin Descriptions

Pin \#	Pin Name	Pin Function
1, 8	FB1, FB2	The inverting inputs of the error amplifiers. Each FB pin is tied to a resistive divider between its output and ground to set the channel output voltage.
2, 7	$\begin{aligned} & \text { BOOST1, } \\ & \text { BOOST2 } \end{aligned}$	Supply pins to the power transistor drivers. Tie to external diode-capacitor charge pumps to generate drive voltages higher than V_{N} in order to fully enhance the internal NPN power switches.
3, 6	SW1, SW2	Emitters of the internal power NPN transistors. Each SW pin is connected to the corresponding inductor, freewheeling diode and bootstrap capacitor.
4, 5	PVIN1, PVIN2	Collectors of the internal power transistors and the power supplies to the corresponding current sensing circuits. Pins 4 and 5 are not internally connected. They must be joined on the PCB and closely bypassed to the power ground plane.
9, 16	COMP1, COMP2	Outputs of the internal error amplifiers. The voltages at these pins control the peak switch currents. RC networks at these pins stabilize the control loops. Pulling either pin below 0.7 V stops the corresponding switching regulator.
10, 14	SS1, SS2	A capacitor from either SS pin to ground provides soft-start and overload hiccup functions for that channel. Pulling either SS pin below 0.8 V with an open drain or collector transistor shuts off the corresponding regulator. To completely shut off the SC2620 to low-current state, pull both SS pins to ground. Soft-start is recommended for all applications.
11	GND	Analog ground. Connect to the PCB power ground plane at a single point.
12	VIN	Power supply to the analog control section of the SC2620. Connect to the PVIN pins through an optional RC filter.
13	ROSC	An external resistor between this pin and the analog ground sets the channel switching frequency.
15	PGOOD1	Open collector output of Channel 1 power good comparator. Tie to an external pull-up resistor from the input or the output of the converter. PGOOD1 output becomes valid as soon as V_{N} rises above $1 \mathrm{~V}_{\text {BE }}$ during power-up. PGOOD1 is actively pulled low until FB1 voltage rises to within 10% of its final regulation voltage.
Underside Metal		The exposed pad at the bottom of the package is electrically connected to the ground pin of the SC2620. It also serves as a thermal contact to the circuit board. It is to be soldered to the analog ground plane of the PC board.

POWER MANAGEMENT

Block Diagrams

Figure 2. SC2620 Block Diagram (Channel 1)

Figure 3. Details of the Soft-Start and Overload Hiccup Control Circuit

POWER MANAGEMENT

Typical Characteristics

SS Shutdown Threshold vs Temperature

SC2620

POWER MANAGEMENT

Typical Characteristics

PGOOD1 Threshold to V_{FB} Difference Voltage vs Temperature

vs Temperature

POWER MANAGEMENT

Operation

The SC2620 is a 30V 2-channel constant-frequency peak current-mode step-down switching regulator with integrated 2.3A power transistors. Both regulators in the SC2620 operate from a common input power supply and share the same voltage reference and the master oscillator. Turn-on of the power transistors is phase-shifted by 180°. The two regulator cores are otherwise completely identical, independent and are capable of producing two separate outputs from the same input.

The channel frequency can be programmed with an external resistor from the ROSC pin to ground. This allows the designer to set the switching frequency according to the input to the output voltage conversion ratio.

Peak current-mode control is utilized for the SC2620. The double reactive poles of the output LC filter are reduced to a single real pole by the inner current loop, easing loop compensation. Fast transient response can be achieved with a simple Type-2 compensation network. Switch collector current is sensed with an integrated $6.3 \mathrm{~m} \Omega$ sense resistor. The sensed current is summed with slopecompensating ramp before it is compared with the transconductance error amplifier output. The PWM comparator tripping point determines the switch turn-on pulse width (Figure 2). The current-limit comparator ILIM turns off the power switch when the sensed-signal exceeds the 20 mV current-limit threshold. ILIM therefore provides cycle-by-cycle limit. Current-limit does not vary with dutycycle.

An external charge pump (formed by the capacitor C_{2} and the diode D_{3} in Figure 1(a)) generates a voltage higher than the input rail at the BOOST pin. The bootstrapped voltage generated becomes the supply voltage for the power transistor driver. Driving the base of the power transistor above the input power supply rail minimizes the power transistor turn-on voltage and maximizes efficiency.

The SS pin is a multiple-function pin. An external capacitor connected from the SS pin to ground together with the internal $1.8 \mu \mathrm{~A}$ and $2.6 \mu \mathrm{~A}$ current sources set the softstart and overload shutoff times of the regulator (Figure 3). The SS pin can also be used to shut off the corresponding
regulator. When either SS pin is pulled below 0.8 V , that regulator is turned off. If both SS pins are pulled below 0.2 V , then the SC2620 undergoes overall shutdown. The current drawn from the input power supply reduces to $40 \mu \mathrm{~A}$. When either SS pin is released, the corresponding soft-start capacitor is charged with a $2 \mu \mathrm{~A}$ current source (not shown in Figure 3). As either SS voltage exceeds 0.3V, the internal bias circuit of the SC2620 is enabled. The SC2620 draws 3.5 mA from $\mathrm{V}_{\text {IN }}$. An internal fast charge circuit quickly charges the soft-start capacitor to 1 V . At this juncture, the fast charge circuit turns off and the $1.8 \mu \mathrm{~A}$ current source slowly charges the soft-start capacitor. The output of the error amplifier is forced to track the slow soft-start ramp at the SS pin. When the COMP voltage exceeds 1.1 V , the switching regulator starts to switch. During soft-start, the current limit of the converter is gradually increased until the converter output comes into regulation.

Hiccup overload protection is utilized in the SC2620. Overload shutdown is disabled during soft-start ($\mathrm{V}_{\mathrm{ss}}<2 \mathrm{~V}$). In Figure 3 the reset input of the overload latch will remain high if the SS voltage is below 2 V . Once the soft-start capacitor is charged above 2 V , the overload shutdown latch is enabled. As the load draws more current from the regulator, the current-limit comparator will limit the peak inductor current. This is cycle-by-cycle current limiting. Further increase in load current will cause the output voltage to decrease. If the output voltage falls below 70% of its set point, then the overload latch will be set and the soft-start capacitor will be discharged with a net current of $0.8 \mu \mathrm{~A}$. The switching regulator is shut off until the softstart capacitor is discharged below 1 V . At this moment, the overload latch is reset. The soft-start capacitor is recharged and the converter again undergoes soft-start. The regulator will go through soft-start, overload shutdown and restart until it is no longer overloaded.

The power good comparator indicates that the channel 1 regulator output has risen to within 10% of its set value. The open collector output of the power good comparator will be actively pulled low if its feedback voltage is below 0.9 V .

POWER MANAGEMENT

Applications Information

Setting the Output Voltage

The regulator output voltage is set with an external resistive divider (Figure 4) with its center tap tied to the FB pin.

Figure 4. $\mathrm{V}_{\text {out }}$ is set with a Resistive Divider

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{~V}_{\text {OUT }}-1\right) \tag{1}
\end{equation*}
$$

The percentage error due the input bias current of the error amplifier is

$$
\frac{\Delta \mathrm{V}_{\text {OUT }}}{V_{\text {OUT }}}=\frac{-15 \mathrm{nA} \cdot 100 \cdot\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right)}{1 \mathrm{~V}} .
$$

Example: Determine the output voltage error of a $\mathrm{V}_{\text {out }}=5 \mathrm{~V}$ converter with $\mathrm{R}_{2}=51.1 \mathrm{k} \Omega$.

From (1),

$$
\begin{aligned}
& \mathrm{R}_{1}=51.1 \mathrm{k} \Omega \cdot(5-1)=205 \mathrm{k} \Omega \\
& \frac{\Delta \mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }}}=\frac{-15 \mathrm{nA} \cdot 100 \cdot(51.1 \mathrm{k} \| 205 \mathrm{k})}{1 \mathrm{~V}}=-0.061 \% .
\end{aligned}
$$

This error is at least an order of magnitude lower than the ratio tolerance resulting from the use of 1% resistors in the divider string.

Setting the Channel Frequency

The switching frequency of the master oscillator is set with an external resistor from the ROSC pin to ground. Channel frequency is one-half of that of the master oscillator. A graph of channel frequency against $R_{\text {osc }}$ is shown in the "Typical Performance Characteristics". Channel frequency is programmable up to 1.4 MHz .

Channel switching frequency is limited by the minimum controllable on time at low duty cycles. For $\mathrm{V}_{1 \mathrm{~N}}>20 \mathrm{~V}$, setting the switching frequency below 500 kHz makes converter output short circuit operation more robust. These will be described in more details later.

Minimum On Time Consideration

The operating duty cycle of a non-synchronous step-down switching regulator in continuous-conduction mode (CCM) is given by

$$
\begin{equation*}
D=\frac{V_{\text {OUT }}+V_{D}}{V_{\text {IN }}+V_{D}-V_{\text {CESAT }}} \tag{2}
\end{equation*}
$$

where $\mathrm{V}_{\text {CESAT }}$ is the switch saturation voltage and V_{D} is voltage drop across the rectifying diode.
Duty cycle decreases with increasing $\frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {OUT }}}$ ratio. In peak current-mode control, the PWM modulating ramp is the sensed current ramp of the power switch. This current ramp is absent unless the switch is turned on. The intersection of this ramp with the output of the voltage feedback error amplifier determines the switch pulse width. The propagation delay time required to immediately turn off the switch after it is turned on is the minimum controllable switch on time ($\mathrm{T}_{\text {on(min) }}$). Closed-loop measurement of the SC2620 with low $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$ ratios shows

Figure 5. Variation of Minimum On Time with Ambient Temperature.

POWER MANAGEMENT

Applications Information

that the minimum on time is about 105 ns at room temperature (Figure 5). The power switch in the SC2620 is either not turned on at all or for at least $\mathrm{T}_{\mathrm{ON}(\mathrm{MIN})}$. If the required switch on time $\left(=\frac{D}{f}\right)$ is shorter than the minimum on time, the regulator will either skip cycles or it will jitter.

Example: Determine the maximum operating frequency of a dual 24 V to 1.2 V and 24 V to 3.3 V switching regulator using the SC2620.

Assuming that $\mathrm{V}_{\mathrm{D}}=0.45 \mathrm{~V}, \mathrm{~V}_{\text {CESAT }}=0.25 \mathrm{~V}$ and $\mathrm{V}_{\text {IN }}=26.4 \mathrm{~V}$ (10% high line), the corresponding duty ratios, D_{1} and D_{2}, of the 1.2 V and 3.3 V converters can be calculated using (2).

$$
\begin{aligned}
& D_{1}=\frac{1.2+0.45}{26.4+0.45-0.25}=0.062 \\
& D_{2}=\frac{3.3+0.45}{26.4+0.45-0.25}=0.14
\end{aligned}
$$

To allow for transient headroom, the minimum operating switch on time should be at least 30% higher than the worst-case minimum on time exhibited in Figure 5. Designing for a switch on time of 150 ns at $\mathrm{V}_{\mathrm{IN}}=26.4 \mathrm{~V}$, the maximum operating frequency of the 24 V to 1.2 V and
3.3 V converter is $\frac{\mathrm{D}_{1}}{150 \mathrm{~ns}}=410 \mathrm{kHz}$.

Minimum Off Time Limitation

The PWM latch in Figure 2 is reset every period by the clock. The clock also turns off the power transistor to refresh the bootstrap capacitor. This minimum off time limits the attainable duty cycle of the regulator at a given switching frequency. The measured minimum off time is 120 ns . For a step-down converter, D increases with increasing $\frac{V_{\text {OUT }}}{V_{\text {IN }}}$ ratio. If the required duty cycle is higher than the attainable maximum, then the output voltage will not be able to reach its set value in continuous-conduction mode.

Example: Determine the maximum operating frequency of a dual 5 V to 1.5 V and 5 V to 4 V switching regulator using the SC2620.

Assuming that $\mathrm{V}_{\mathrm{D}}=0.45 \mathrm{~V}, \mathrm{~V}_{\text {CESAT }}=0.25 \mathrm{~V}$ and $\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ (10% low line), the duty ratios D_{1} and D_{2} of the 1.5 V and 4 V converters can be calculated using (2).

$$
\begin{aligned}
& D_{1}=\frac{1.5+0.45}{4.5+0.45-0.25}=0.42 \\
& D_{2}=\frac{4+0.45}{4.5+0.45-0.25}=0.95
\end{aligned}
$$

The maximum operating channel frequency of the dual 1.5 V and the 4 V converter is therefore $\frac{1-\mathrm{D}_{2}}{120 \mathrm{~ns}}=410 \mathrm{kHz}$.

Transient headroom requires that channel frequency be lower than 410 kHz .

Inductor Selection

The inductor ripple current ΔI_{L} for a non-synchronous stepdown converter in continuous-conduction mode is

$$
\begin{equation*}
\Delta I_{L}=\frac{\left(V_{\text {OUT }}+V_{D}\right)(1-D)}{f L}=\frac{\left(V_{\text {OUT }}+V_{D}\right)\left(V_{\text {IN }}-V_{\text {OUT }}-V_{\text {CESAT }}\right)}{\left(V_{\text {IN }}+V_{D}-V_{\text {CESAT }}\right) f L} \tag{3}
\end{equation*}
$$

where f is the switching frequency and L is the inductance.
In current-mode control, the slope of the modulating (sensed switch current) ramp should be steep enough to lessen jittery tendency but not so steep that large flux swing decreases efficiency. Inductor ripple current $\Delta \mathrm{I}_{\llcorner }$ between $25-40 \%$ of the peak inductor current limit is a good compromise. Inductors so chosen are optimized in size and DCR. Setting $\Delta \mathrm{I}_{\mathrm{L}}=0.3(2.3)=0.69 \mathrm{~A}$, $\mathrm{V}_{\mathrm{D}}=0.45 \mathrm{~V}$ and $\mathrm{V}_{\text {CESAT }}=0.25 \mathrm{~V}$ in (3),

POWER MANAGEMENT

Applications Information

$$
\begin{equation*}
\mathrm{L}=\frac{\left(\mathrm{V}_{\text {OUT }}+0.45\right)\left(\mathrm{V}_{\text {In }}-\mathrm{V}_{\text {OUT }}-0.25\right)}{\left(\mathrm{V}_{\text {II }}+0.2\right)(0.69) \mathrm{f}} \tag{4}
\end{equation*}
$$

where L is in $\mu \mathrm{H}$ and f is in MHz .

Equation (3) shows that for a given $\mathrm{V}_{\text {out }}, \Delta \mathrm{I}_{\mathrm{L}}$ increases as D decreases. If $\mathrm{V}_{\text {IN }}$ varies over a wide range, then choose L based on the nominal input voltage. Always verify converter operation at the input voltage extremes.

The peak current limits of both SC2620 power transistors are internally set at 3.2A. The peak current limits are dutycycle invariant and are guaranteed higher than 2.3 A . The maximum load current is therefore conservatively:

$$
\begin{equation*}
\mathrm{I}_{\text {OUT(MAX) }}=\mathrm{I}_{\mathrm{LM}}-\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=2.3 \mathrm{~A}-\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2} \tag{5}
\end{equation*}
$$

If $\Delta \mathrm{I}_{\mathrm{L}}=0.3 \cdot \mathrm{I}_{\mathrm{LM}}$, then

$$
\mathrm{I}_{\text {OUT(MAX) }}=\mathrm{I}_{\mathrm{LM}}-\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}=\mathrm{I}_{\mathrm{LM}}-\frac{0.3 \mathrm{I}_{\mathrm{LM}}}{2}=0.85 \cdot \mathrm{I}_{\mathrm{LM}} \text {. }
$$

The saturation current of the inductor should be 20-30\% higher than the peak current limit (2.3A). Low-cost powder iron cores are not suitable for high-frequency switching power supplies due to their high core losses. Inductors with ferrite cores should be used.

Power Line Input Capacitor

A buck converter draws pulse current with peak-to-peak amplitude equal to its output current $\mathrm{I}_{\text {out }}$ from its input supply. An input capacitor placed between the supply and the buck converter filters the AC current and keeps the current drawn from the supply to a DC constant. The input capacitance $\mathrm{C}_{\text {IN }}$ should be high enough to filter the pulse input current. Its equivalent series resistance (ESR) should be low so that power dissipated in the capacitor does not result in significant temperature rise and degrade reliability. For a single channel buck converter, the RMS ripple current in the input capacitor is

$$
\begin{equation*}
I_{\mathrm{RMS}_{(\mathrm{CIN})}}=\mathrm{I}_{\mathrm{OUT}} \sqrt{D(1-\mathrm{D})} . \tag{6}
\end{equation*}
$$

Power dissipated in the input capacitor is $I_{\text {RMS }}^{2}{ }_{(I I N)} \cdot($ (ESR) . Equation (6) has a maximum value of $\frac{\mathrm{I}_{\text {OUT }}}{2}$ (at $\mathrm{D}=\frac{1}{2}$), corresponding to the worst-case power dissipation $\frac{\mathrm{I}_{\text {OUT }}^{2} \cdot E S R}{4}$ in $\mathrm{C}_{\text {IN }}$.

A dual-channel step-down converter with interleaved switching reduces the RMS ripple current in the input capacitor to a fraction of that of a single-phase buck converter. If both power transistors in the SC2620 were to switch on in phase, the current drawn by the SC2620 would consist of current pulses with amplitude equal to the sum of the channel output currents. If each channel were delivering $I_{\text {out }}$ and operating at 50% duty cycle, then the input current would switch from zero to $2 \mathrm{I}_{\text {our }}$. The RMS ripple current in the input capacitor would then be $\mathrm{I}_{\text {out }}$. Power dissipated in $\mathrm{C}_{\text {IN }}$ would be $\mathrm{I}_{\text {OUT }}^{2}$ - ESR, 4 times that of a single-channel converter. The SC2620 produces the highest RMS ripple current in $\mathrm{C}_{\mathbb{N}}$ when only one channel is running and delivering the maximum output current (2A). The input capacitor therefore should have a RMS ripple current rating of at least 1A.

Multi-layer ceramic capacitors, which have very low ESR (a few $m \Omega$) and can easily handle high RMS ripple current, are the ideal choice for input filtering. A single $4.7 \mu \mathrm{~F}$ or $10 \mu \mathrm{~F} \times 5 \mathrm{R}$ ceramic capacitor is adequate. For high voltage applications, a small ceramic ($1 \mu \mathrm{~F}$ or $2.2 \mu \mathrm{~F}$) can be placed in parallel with a low ESR electrolytic capacitor to satisfy both the ESR and bulk capacitance requirements.

Output Capacitor

The output ripple voltage $\Delta \mathrm{V}_{\text {out }}$ of a buck converter can be expressed as

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {OUT }}=\Delta \mathrm{I}_{\mathrm{L}}\left(E S R+\frac{1}{8 \mathrm{fC}_{\text {OUT }}}\right) \tag{7}
\end{equation*}
$$

where $\mathrm{C}_{\text {out }}$ is the output capacitance.
Inductor ripple current $\Delta I_{\llcorner }$increases as D decreases (Equation (3)). The output ripple voltage is therefore the highest when $\mathrm{V}_{\text {IN }}$ is at its maximum. The first term in (7) results from the ESR of the output capacitor while the

POWER MANAGEMENT

Applications Information

second term is due to the charging and discharging of $\mathrm{C}_{\text {OUt }}$ by the inductor ripple current. Substituting $\Delta \mathrm{I}_{\mathrm{L}}=$ $0.69 \mathrm{~A}, \mathrm{f}=500 \mathrm{kHz}$ and $\mathrm{C}_{\text {out }}=22 \mu \mathrm{~F}$ ceramic with $\mathrm{ESR}=$ $2 m \Omega$ in (7),

$$
\begin{aligned}
\Delta \mathrm{V}_{\text {OUT }} & =0.69 \mathrm{~A} \cdot(2 \mathrm{~m} \Omega+11.4 \mathrm{~m} \Omega) \\
& =1.4 \mathrm{mV}+7.8 \mathrm{mV}=9.2 \mathrm{mV}
\end{aligned}
$$

Depending on operating frequency and the type of capacitor, ripple voltage resulting from charging and discharging of $\mathrm{C}_{\text {out }}$ may be higer than that due to ESR. A $10 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F} \times 5 \mathrm{R}$ ceramic capacitor is found adequate for output filtering in most applications. Ripple current in the output capacitor is not a concern because the inductor current of a buck converter directly feeds $\mathrm{C}_{\text {out }}$, resulting in very low ripple current. Avoid using Z5U and Y5V ceramic capacitors for output filtering because these types of capacitors have high temperature and high voltage coefficients.

Freewheeling Diode

Use of Schottky barrier diodes as freewheeling rectifiers reduces diode reverse recovery input current spikes, easing high-side current sensing in the SC2620. These diodes should have an average forward current rating between 1 A and 2 A and a reverse blocking voltage of at least a few volts higher than the input voltage. For switching regulators operating at low duty cycles (i.e. low output voltage to input voltage conversion ratios), it is beneficial to use freewheeling diodes with somewhat higher average current ratings (thus lower forward voltages). This is because the diode conduction interval is much longer than that of the transistor. Converter efficiency will be improved if the voltage drop across the diode is lower.

The freewheeling diodes should be placed close to the SW pins of the SC2620 to minimize ringing due to trace inductance. 10BQ015, 20BQ030 (International Rectifier), MBRM120LT3 (ON Semi), UPS120 and UPS140 (MicroSemi) are all suitable.

Bootstrapping the Power Transistors

To maximize efficiency, the turn-on voltage across the internal power NPN transistors should be minimized. If these transistors are to be driven into saturation, then
their bases will have to be driven from a power supply higher in voltage than V_{IN}. The required driver supply voltage (at least 2.5 V higher than the SW voltage over the industrial temperature range) is generated with a bootstrap circuit (the diode $D_{B S T}$ and the capacitor $C_{B S T}$ in Figure 7). The bootstrapped output (the common node between $D_{\text {BST }}$ and $\mathrm{C}_{\mathrm{BST}}$) is connected to the BOOST pin of the SC2620. The power transistor in the SC2620 is first switched on to build up current in the inductor. When the transistor is switched off, the inductor current pulls the SW node low, allowing $\mathrm{C}_{\mathrm{BST}}$ to be charged through $\mathrm{D}_{\mathrm{BST}}$. When the power switch is again turned on, the SW voltage goes high. This brings the BOOST voltage to $\mathrm{V}_{\mathrm{SW}}+\mathrm{V}_{\mathrm{C}_{\text {BST }}}$, thus back-biasing $D_{B S T} . C_{B S T}$ voltage increases with each subsequent switching cycle, as does the bootstrapped voltage at the BOOST pin. After a number of switching cycles, $C_{B S T}$ will be fully charged to a voltage approximately equal to that applied to the anode of $D_{\text {BST }}$. Figure 6 shows the typical minimum BOOST to SW voltage required to fully saturate the power transistor. This differential voltage ($=\mathrm{V}_{\mathrm{C}_{\text {BST }}}$) must be at least 1.8 V at room temperature. This is also specified in the "Electrical Characteristics" as "Minimum Bootstrap Voltage". The minimum required $V_{C_{B S T}}$ increases as temperature decreases. The bootstrap circuit reaches equilibrium when the base charge drawn from $\mathrm{C}_{\mathrm{BST}}$ during transistor on time is equal to the charge replenished during the off interval.

Figure 6. Typical Minimum Bootstrap Voltage Required to Maintain Saturation at $\mathrm{I}_{\mathrm{sw}}=2 \mathrm{~A}$.

POWER MANAGEMENT

Applications Information

The switch base current $=\frac{I_{S W}}{\beta+1} \approx \frac{I_{\mathrm{SW}}}{\beta}$, where I_{sw} and β are the switch emitter current and current gain respectively, is drawn from the bootstrap capacitor $C_{B S T}$. Charge $\frac{I_{\text {SW }} T_{O N}}{\beta}$ is drawn from $\mathrm{C}_{\text {BST }}$ during the switch on time, resulting in a voltage droop of $\frac{I_{\mathrm{SW}} \mathrm{T}_{\mathrm{ON}}}{\beta \mathrm{C}_{\mathrm{BST}}}$. If $\mathrm{I}_{\mathrm{SW}}=2 \mathrm{~A}, \mathrm{~T}_{\mathrm{ON}}=1 \mu \mathrm{~s}, \beta=35$ and $C_{\text {BST }}=0.1 \mu \mathrm{~F}$, then the $\mathrm{V}_{\mathrm{C}_{\text {BST }}}$ droop will be 0.57 V . $\mathrm{C}_{\text {BST }}$ is If $\mathrm{D}_{\text {BST }}$ is tied to the input, then the charge drawn from the
refreshed to $V_{A}-V_{D_{\text {BST }}}+V_{D_{\text {RECT }}}$ every cycle, where V_{A} is the applied $\mathrm{D}_{\text {BST }}$ anode voltage. Switch base current discharges the bootstrap capacitor to $V_{A}-V_{D_{\text {BST }}}+V_{D_{R E G T}}-\frac{I_{S W} T_{O N}}{\beta C_{B S T}}$ at the end of conduction. This voltage must be higher than the minimum shown in Figure 6 to ensure full switch enhancement. $D_{\text {BST }}$ can be tied either to the input or to the output of the DC/DC converter.

Figure 7. Methods of Bootstrapping the SC2620.

POWER MANAGEMENT

Applications Information

input power supply will be $\frac{\mathrm{I}_{\mathrm{SW}} \mathrm{T}_{\mathrm{ON}}}{\beta}$ (the base charge of the switch). The energy loss due to base charge per cycle is $\frac{I_{\mathrm{SW}} \mathrm{V}_{\mathrm{IN}} \mathrm{T}_{\text {oN }}}{\beta}$ for a power loss of $\frac{\mathrm{DI}_{\mathrm{SW}} \mathrm{V}_{\mathrm{IN}}}{\beta} \approx \frac{\mathrm{I}_{\mathrm{SW}} \mathrm{V}_{\text {OUT }}}{\beta}$.

If $D_{B S T}$ is tied to the output, then the charge drawn from the output capacitor will still be $\frac{\mathrm{I}_{\mathrm{SW}} \mathrm{T}_{\mathrm{ON}}}{\beta}$. The energy loss due to base charge per cycle is $\frac{\mathrm{I}_{\mathrm{SW}} \mathrm{V}_{\mathrm{OUT}} \mathrm{T}_{\mathrm{ON}}}{\beta}$ for a power loss of $\frac{\mathrm{Dl}_{\mathrm{SW}} \mathrm{V}_{\text {OUT }}}{\beta}$.

Since $\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {IN }}, \mathrm{D}_{\text {BST }}$ should always be tied to $\mathrm{V}_{\text {OUT }}$ (if $>2.5 \mathrm{~V}$) to maximize efficiency. In general efficiency penalty increases as D decreases.

Figure 7 summarizes various ways of bootstrapping the SC2620. A fast switching PN diode (such as 1N4148 or $1 \mathrm{~N} 914)$ and a small ($0.1 \mu \mathrm{~F}-0.47 \mu \mathrm{~F}$) ceramic capacitor can be used. In Figure 7(a) the power switch is bootstrapped from the output. This is the most efficient configuration and it also results in the least voltage stress
at the BOOST pin. The maximum BOOST pin voltage is about $\mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {OUT }}$. If the output is below 2.8 V , then $\mathrm{D}_{\text {BST }}$ will preferably be a small Schottky diode (such as BAT-54) to maximize bootstrap voltage. A 0.33-0.47 $\mu \mathrm{F}$ bootstrap capacitor may be needed to reduce droop. Bench measurement shows that using Schottky bootstrapping diode has no noticeable efficiency benefit.

The SC2620 can also be bootstrapped from the input (Figure $7(\mathrm{~b})$). This configuration is not as efficient as Figure 7(a). However this may be only option if the output voltage is less than 2.5 V and there is no other supply with voltage higher than 2.5 V . Voltage stress at the BOOST pin can be somewhat higher than $2 \mathrm{~V}_{\text {IN }}$. The Zener diode in Figure 7(c) reduces the maximum BOOST pin voltage. The BOOST pin voltage should not exceed its absolute maximum rating of 42V.

Figures 7(d) and (e) show how to bootstrap the SC2620 from a second power supply V_{s} with voltage $>2.5 \mathrm{~V} . \mathrm{V}_{\mathrm{s}}$ in Figure 7(d) can be the output of the other channel. Figures 1(a), 17(a) and 18(a) show this bootstrapping method. If Channel 1 fails in these converters, Channel 2 will be shut off (See Sequencing the Outputs). Proper bootstrapping of Channel 2 therefore depends on the readiness of $\mathrm{V}_{\text {out1 }}$. This may be a drawback in some applications. $\mathrm{D}_{\mathrm{BST}}$ in Figure 7 (e) prevents start up difficulty if $\mathrm{V}_{\text {IN }}$ comes up before V_{S}.

Figure 8. Minimum Input Voltage Required to Start and to Maintain Bootstrap. $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.

POWER MANAGEMENT

Applications Information

Since the inductor current charges $\mathrm{C}_{\text {BST }}$, the bootstrap circuit requires some minimum load current to get going. Figures 8(a) and 8(b) show the dependence of the minimum input voltage required to properly bootstrap a 5 V and a 3.3 V converters on the load current. Once started the bootstrap circuit is able to sustain itself down to zero load.

Shutdown and Soft-Start

Each regulating channel of the SC2620 has its own softstart circuit. Pulling its soft-start pin below 0.8 V with an open-collector NPN or an open-drain NMOS transistor turns off the corresponding regulator. The other regulator continues to operate. With one channel turned off, the
internal bias circuit is kept alive. In the "Typical Characteristics", the soft-start pin current is plotted against the soft-start voltage with $\mathrm{V}_{\text {iN }}=5 \mathrm{~V}$. When one of the softstart pins is pulled low, $105 \mu \mathrm{~A}$ flows out of that pin. Pulling both soft-start pins below 0.2 V shuts off the internal bias circuit of the SC2620. The total $\mathrm{V}_{\text {IN }}$ current decreases to $40 \mu \mathrm{~A}$. In shutdown either SS pin sources only $2 \mu \mathrm{~A}$. A fast charging circuit (enabled by the internal bias circuit), which charges the soft-start capacitor below 1V, causes the difference in the soft-start pin currents.

If either SS pin is released in shutdown, the internal current source pulls up on the SS pin. When this SS voltage reaches 0.3 V , the SC2620 turns on and the $\mathrm{V}_{\text {IN }}$ quiescent current

Figure 9(a). Normal Soft-start.

Figure 9(b). Start-up Fails due to (i) Short Soft-start Duration or (ii) Output Overload or (iii) Output Short-circuited.

POWER MANAGEMENT

Applications Information

increases to 3.3 mA . The current flowing out of the other SS pin (which is still pulled low) increases to $105 \mu \mathrm{~A}$. The fast charging circuit quickly pulls the released soft-start capacitor to 1 V (slightly below the switching threshold). The fast charging circuit is then disabled. A $1.8 \mu \mathrm{~A}$ current source continues to charge the soft-start capacitor (Figure 3). The soft-start voltage ramp at the SS pin clamps the error amplifier output (Figure 2). During regulator startup, COMP voltage follows the SS voltage. The converter starts to switch when its COMP voltage exceeds 1.1V. The peak inductor current gradually increases until the converter output comes into regulation. Proper soft-start prevents output overshoot during start-up. Current drawn from the input supply is also well controlled. Notice that the inductor current, not the converter output voltage, is ramped during soft-start.

Both soft-start capacitors are charged to a final voltage of about 2.4 V .

Overload / Short-Circuit Protection

Each current limit comparator in the SC2620 limits the peak inductor current to 3.2A (typical). The regulator

output voltage will fall if the load is increased above the current limit. If overload is detected (the output voltage falls below 70\% of the set voltage), then the regulator will be shut off. An internal $0.8 \mu \mathrm{~A}$ current sink starts to discharge the soft-start capacitor. As the soft-start capacitor is discharged below 1 V , the discharge current source turns off and the soft-start capacitor is recharged with a $1.8 \mu \mathrm{~A}$ current source. The regulator undergoes softstart. During soft-start ($1 \mathrm{~V}<\mathrm{V}_{\text {ss }}<2 \mathrm{~V}$), the overload shutdown latch in Figure 3 cannot be set. When $\mathrm{V}_{\text {ss }}$ exceeds 2 V , the set input of the overload latch is no longer blanked. If V_{FB} is still below 0.7 V , then the regulator will undergo shutdown and restart. The soft-start process should allow the output voltage to reach 70% of its final value before $\mathrm{C}_{\text {ss }}$ is charged above 2 V . Figures 9(a) and $9(b)$ show the timing diagrams of successful and failed start-up waveforms respectively. The soft-start interval should also be made sufficiently long so that the output voltage rises monotonically and it does not overshoot its final voltage by more than 5%.

During normal soft-start, both the COMP voltage and the switch current limit gradually increase until the converter becomes regulated. If the regulator output is shorted to

Figure 10. Sequencing the Outputs by (a) Delaying Release of one Channel Relative to the Other and (b) Using PGOOD1 to Control Channel 2.

POWER MANAGEMENT

Applications Information

ground, then the COMP voltage will continue to rise to its 2.4 V upper limit. The SC2620 will reach its cycle-by-cycle current limit sometime during the soft-start charging phase (see Figure 17(c)). As described previously, the switches in the SC2620 either do not turn on at all or for at least 105ns. With the output shorted, the error amplifier will command the regulator to operate at full duty cycle. The current limit comparator will turn off the switch if the switch current exceeds 3.2A. However, this happens only after the switch is turned on for 105 ns. During switch off time, the inductor current ramps down at a slow rate determined by the forward voltage of the freewheeling diode and the resistance of the short. If the resulting reverse volt-second is insufficient to reset the inductor before the start of the next cycle, then the inductor current will keep increasing until the diode forward voltage becomes high enough to achieve volt-second balance. This makes the current limit comparator ineffective. Short circuit robustness will be enhanced if the switching frequency is set below 500 kHz at high $\mathrm{V}_{\mathrm{IN}}(>20 \mathrm{~V})$. This increases the off time and keeps the inductor current within bounds. The regulator is to be checked under realistic short circuit condition as the residual resistance of the short can significantly influence circuit behavior. Shortening the soft-start interval from the onset of switching to hiccup enable also makes short circuit operation more robust. A $22-47 \mathrm{nF}$ soft-start capacitor is found adequate for most applications.

In Figure 17(c), Channel 2 undergoes repeated shutdown and restart ("hiccup") with its output shorted. $\mathrm{V}_{\text {SS }}$ appears as an asymmetrical triangular wave. The resistance of the short appears to be $17 \mathrm{~m} \Omega$.

Power Good Indicator

The PGOOD1 pin (Pin 15) is the open-collector output of Channel 1 power good comparator. This slow comparator is incorporated with a small amount of hysteresis. The FB low-to-high trip voltage of the power good comparator is 90% of the final regulation voltage. A pull-up resistor from the PGO0D1 pin to the input supply or the regulator output sets the logic high level of the comparator.

The power good comparator output becomes valid provided that $\mathrm{V}_{\text {IN }}$ is above 0.9 V . In shutdown the power good output is actively pulled low. A power good pull-up resistor tied to the input will therefore increase current drain during shutdown. Tying the power good pull-up resistor to the regulator output is preferred, as this will minimize the
shutdown supply current. In shutdown there is no voltage at the switching regulator output or current in the PGOOD1 pull-up resistor. If the PGOOD1 output high level $\left(=\mathrm{V}_{\mathrm{ouT}}\right)$ is unacceptably low, then power good pull-up from the input or a separate power supply will be the only choice.

Sequencing the Outputs

As mentioned above, pulling either soft-start pin low with an external transistor shuts off the corresponding regulator (Figure 10). Releasing the soft-start pin enables that channel and allows it to start. Delaying the release of the soft-start pin of one channel with respect to the other is a straightforward way of sequencing the outputs. Figure 10(a) shows this method using two external transistors M_{1} and $M_{2} . M_{1}$ is turned off first, allowing channel 1 to start. Channel 2 is then enabled after time T_{D}.

PGOOD1 can also be used in conjunction with Channel 2 soft-start to delay start of that regulator. This method is depicted in Figure 10(b). SS2 is pulled low and channel 2 is kept off until channel 1 output rises to 90% of its set voltage.

Loop Compensation

Figure 11 shows a simplified equivalent circuit of a stepdown converter. The power stage, which consists of the current-mode PWM comparator, the power switch, the freewheeling diode and the inductor, feeds the output network. The power stage can be modeled as a voltagecontrolled current source, producing an output current proportional to its controlling input $V_{\text {сомр }}$. Its transconductance G_{MP} is $8 \Omega^{-1}$. With the current loop closed, the control-to-output transfer function $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {COMP }}}$ has a dominant-pole p_{2} located at a frequency slightly higher than that of the output filter pole.

$$
\begin{equation*}
\omega_{\mathrm{p} 2} \approx-\frac{\mathrm{nl}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{OUT}} \mathrm{C}_{1}}=-\frac{\mathrm{n}}{\mathrm{R}_{\mathrm{OUT}} \mathrm{C}_{1}} \tag{8}
\end{equation*}
$$

where C_{1} is the output capacitor, $R_{\text {out }}$ is the equivalent load resistance and n (depending on duty ratio, slope compensation, frequency and passive components) is usually between 1 and 2 .

POWER MANAGEMENT

Applications Information

Figure 11. Simplified Control Loop Equivalent Circuit

If C_{1} is ceramic, then its ESR zero can be neglected as it situates well beyond half the switching frequency. The low frequency gain of the control-to-output transfer function is simply the product of power stage transconductance and the equivalent load resistance (Figure 12).

The transfer functions of the feedback network and the error amplifier are:

$$
\frac{v_{\mathrm{FB}}}{v_{\text {OUT }}}=\left(\frac{\mathrm{R}_{2}}{R_{1}+\mathrm{R}_{2}}\right)\left[\frac{1+\mathrm{s} \mathrm{C}_{11} \mathrm{R}_{1}}{1+\mathrm{s}\left(\mathrm{R}_{1} \| R_{2}\right) \mathrm{C}_{11}}\right]
$$

and

$$
\begin{equation*}
\frac{v_{\text {COMP }}}{v_{F B}} \approx \frac{\mathrm{G}_{\text {MA }} R_{0}\left(1+\mathrm{sC}_{5} \mathrm{R}_{5}\right)}{\left(1+\mathrm{sC}_{5} \mathrm{R}_{0}\right) \cdot\left(1+\mathrm{sC}_{6} \mathrm{R}_{5}\right)} \tag{10}
\end{equation*}
$$

provided that $C_{5} \gg C_{6}$ and $R_{0} \gg R_{5}$.

In Equation (10), C_{5} forms a low frequency pole p_{1} with the output resistance R_{0} of the error amplifier and C_{6} forms a high frequency pole p_{3} with R_{5} :

$$
\begin{aligned}
& \mathrm{R}_{0}=\frac{\text { AmplifierOpen Loop Gain }}{\text { Transconduc tance }}=\frac{53 \mathrm{~dB}}{280 \mu \Omega^{-1}}=1.6 \mathrm{M} \Omega \\
& \omega_{\mathrm{p} 1}=-\frac{1}{\mathrm{R}_{0} \mathrm{C}_{5}}
\end{aligned}
$$

$$
\omega_{p 3}=-\frac{1}{R_{5} C_{6}}
$$

In addition C_{5} and R_{5} form a zero with angular frequency:

$$
\omega_{z 1}=-\frac{1}{R_{5} C_{5}}
$$

The output-to-control transfer function $\frac{v_{\text {COMP }}}{v_{\text {OUT }}}=\frac{v_{\text {COMP }}}{v_{\text {FB }}} \cdot \frac{v_{\text {FB }}}{v_{\text {OUT }}}$ is also shown in Figure 12. Its midband gain (between z_{1} and p_{3}) is $G_{M A} R_{5}\left(\frac{R_{2}}{R_{1}+R_{2}}\right)$. The overall loop gain $\mathrm{T}(\mathrm{s})$ is the product of the control-to-output and the output-to-control transfer functions. To simplify $|\mathrm{T}(\mathrm{j} \omega)|$ Bode plot, the feedback network is assumed to be resistive. If the overall loop gain is to cross OdB at one tenth of the switching frequency ($\omega_{\mathrm{C}}=\frac{\omega_{\mathrm{S}}}{10}=\frac{\pi f}{5}$) at $-20 \mathrm{~dB} /$ decade, then its mid-band gain (between z_{1} and p_{2}) will be

$$
\frac{\omega_{\mathrm{C}}}{\omega_{\mathrm{p} 2}}=\frac{\frac{\omega_{\mathrm{S}}}{10}}{\frac{\mathrm{n}}{\mathrm{C}_{1} \mathrm{R}_{\mathrm{OUT}}}}=\frac{\omega_{\mathrm{S}} \mathrm{C}_{1} \mathrm{R}_{\mathrm{oUT}}}{10 \mathrm{n}}
$$

POWER MANAGEMENT

Applications Information

This is also equal to $G_{M P} R_{\text {OUT }} G_{M A} R_{5}\left(\frac{R_{2}}{R_{1}+R_{2}}\right)$. Therefore

$$
\begin{equation*}
G_{M P} R_{O U T} G_{M A} R_{5}\left(\frac{R_{2}}{R_{1}+R_{2}}\right)=\frac{\omega_{S} C_{1} R_{\text {OUT }}}{10 n} . \tag{12}
\end{equation*}
$$

$\omega_{z 1}$ is shown to be less than $\omega_{\mathrm{p} 2}$ in Figure 12. Making $\omega_{z 1}=\frac{\omega_{\mathrm{C}}}{6}=\frac{\omega_{\mathrm{S}}}{60}$ gives a first-order estimate of C_{5} :

$$
C_{5} \approx \frac{60}{\omega_{S} R_{5}}
$$

Re-arranging,

$$
\begin{equation*}
\mathrm{R}_{5}=\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right) \frac{\omega_{\mathrm{S}} \mathrm{C}_{1}}{10 \mathrm{GG}_{\mathrm{MP}} G_{\mathrm{MA}}} \tag{11}
\end{equation*}
$$

Notice that R_{5} determines the mid-band loop gain of the converter. Increasing R_{5} increases the mid-band gain and the crossover frequency. However it reduces the phase margin. C_{6} is a small ceramic capacitor to roll off the loop

Figure 12. Bode Plots of Control-to-Ouput, Output-to-Control and the Overall Loop Gain. Control-to-output transfer function is shown with two poles near half the switching frequency ω_{s}.

POWER MANAGEMENT

Applications Information

gain at high frequency. Placing p_{3} at about $\frac{\omega_{S}}{2}$ gives:

$$
\begin{equation*}
C_{6} \approx \frac{1}{\pi f R_{5}} \tag{13}
\end{equation*}
$$

Computed $\mathrm{R}_{5}, \mathrm{C}_{5}$ and C_{6} can indeed result in near optimal load transient responses in over half of the applications. However in other cases empirically determined compensation networks based on optimized load transient responses may differ from those calculated by a factor of 3. Therefore checking the transient response of the converter is imperative. Starting with calculated $\mathrm{R}_{5}, \mathrm{C}_{5}$ and C_{6} (using $\mathrm{n}=1$ in Equations (11)-(13)), apply the largest expected load step to the converter at the maximum operating $\mathrm{V}_{\mathrm{IN}^{-}}$. Observe the load transient response of the converter while adjusting $\mathrm{R}_{5}, \mathrm{C}_{5}$ and C_{6}. Choose the largest R_{5}, the smallest C_{5} and C_{6} so that the inductor current waveform does not show excessive ringing or overshoot (see Figures 13(a), 13(b), 16(b) and 16(c)).

Feedforward capacitor C_{11} boosts phase margin over a limited frequency range and is sometimes used to improve loop response. C_{11} will be more effective if $R_{1} \gg R_{1} \| R_{2}$.

Upper Trace : OUT1 Voltage, AC Coupled, $0.5 \mathrm{~V} /$ div Lower Trace : L_{1} Inductor Current, $0.5 \mathrm{~A} / \mathrm{div}$
(a)

Example: Determine the compensation components for the $550 \mathrm{kHz} 9 \mathrm{~V}-16 \mathrm{~V}$ to 3.3 V and 1.2 V converter in Figure 1(a).

For both channels, $\omega_{\mathrm{S}}=3.5 \mathrm{Mrads}^{-1}$, $\mathrm{I}_{\mathrm{OUT}_{\text {(MAX })}}=2 \mathrm{~A}$ and $\mathrm{C}_{1}=22 \mu \mathrm{~F} . \mathrm{n}$ is assumed to be 1 in (11) and (12).

For the 3.3V output:

$$
\begin{aligned}
\mathrm{R}_{5} & =\left(1+\frac{30.1 \mathrm{k}}{13 \mathrm{k}}\right) \frac{3.5 \times 10^{6} \cdot 22 \times 10^{-6}}{10 \cdot(1) \cdot(8) \cdot\left(2.8 \times 10^{-4}\right)} \\
& =11.3 \mathrm{k} \Omega \\
\mathrm{C}_{5} & \approx \frac{60}{11.3 \mathrm{k} \cdot 2 \pi \cdot 5.5 \times 10^{5}}=1.5 \mathrm{nF} \\
C_{6} & \approx \frac{1}{\pi \cdot\left(550 \times 10^{3}\right) \cdot\left(11.3 \times 10^{3}\right)} \approx 47 \mathrm{pF}
\end{aligned}
$$

Upper Trace : OUT2 Voltage, AC Coupled, $0.5 \mathrm{~V} / \mathrm{div}$ Lower Trace : L_{2} Inductor Current, $0.5 \mathrm{~A} /$ div
(b)

Figure 13. Load Transient Response of the Dual DC-DC Converter in Figure 1(a). $\mathrm{I}_{\text {out } 1}$ and $\mathrm{I}_{\text {out } 2}$ are switched between 0.3A and 2A.

POWER MANAGEMENT

Applications Information

For the 1.2 V channel:

$$
\begin{aligned}
\mathrm{R}_{7} & =\left(1+\frac{2.61 \mathrm{k}}{13 \mathrm{k}}\right) \frac{3.5 \times 10^{6} \cdot 22 \times 10^{-6}}{10 \cdot(1) \cdot(8) \cdot\left(2.8 \times 10^{-4}\right)} \\
& =4.12 \mathrm{k} \Omega \\
\mathrm{C}_{8} & \approx \frac{60}{4.12 \mathrm{k} \cdot 2 \pi \cdot 5.5 \times 10^{5}}=3.9 \mathrm{nF} \\
\mathrm{C}_{9} & \approx \frac{1}{\pi \cdot\left(550 \times 10^{3}\right) \cdot\left(4.12 \times 10^{3}\right)} \approx 150 \mathrm{pF}
\end{aligned}
$$

Bench measurement shows that compensation components computed from our simplified linear model give very good load transient response for Channel 1 (Figure 13(a)). However, optimizing load transient for Channel 2 will require a set of compensation component values different from those calculated above. Loop compensation networks shown in Figure 1(a) are empirically optimized for load transients. Figures 13(a) and 13(b) show the corresponding load transient responses.

Board Layout Considerations

In a step-down switching regulator, the input bypass capacitor, the main power switch and the freewheeling diode carry discontinuous currents with high $\frac{\mathrm{di}}{\mathrm{dt}}$ (Figure 14). For jitter-free operation, the size of the loop formed by these components should be minimized. Since the power switches are already integrated within the SC2620, connecting the anodes of both freewheeling diodes close to the negative terminal of the input bypass capacitor minimizes size of the switched current loop. The input bypass capacitors should be placed close to the PVIN pins. Shortening the traces of the SW and BOOST nodes reduces the parasitic trace inductance at these nodes. This not only reduces EMI but also decreases switching voltage spikes at these nodes.

The PVIN bypass capacitor C_{15}, the output filtering capacitors and the freewheeling diodes are to be grounded on the power ground plane (Figure 15). The feedback resistive dividers, the compensation networks, the soft-

Figure 14. Fast Switching Current Paths in a Buck Regulator. Minimize the size of this loop to reduce parasitic trace inductance.

POWER MANAGEMENT

Applications Information

start capacitors and the VIN filtering capacitor C_{16} are to be tied to the analog ground. The frequency-setting resistor R_{9} is placed next to the ROSC pin and is also connected to the analog ground. R_{20} is a 0Ω resistor that connects the analog ground to the power ground at a single point.

The exposed pad should be soldered to a large analog ground plane as the analog ground copper acts as a heat sink for the device. To ensure proper adhesion to the ground plane, avoid using vias directly under the device. In figure 15 two 12 mil vias are placed at the edge of the underside pad.

Figure 15. Suggested PCB Layout for the SC2620.

POWER MANAGEMENT

Typical Application Circuits

Figure $16(\mathrm{a}) .1 .2 \mathrm{MHz} 5 \mathrm{~V}$ to 3.3 V and 1.2 V xDSL Power Supply. Channel 2 does not start until Channel 1 output voltage becomes regulated.

Upper Trace : OUT1 Voltage, AC Coupled, 0.5V/div Lower Trace : L_{1} Inductor Current, $0.5 \mathrm{~A} /$ div
(b)

Upper Trace : OUT2 Voltage, AC Coupled, 0.2V/div Lower Trace : L_{2} Inductor Current, $0.5 \mathrm{~A} /$ div
(c)

Figures $16(b)$ and 16 (c). Load Transient Response. $I_{\text {out }}$ is switched between 0.3 A and 2 A .

POWER MANAGEMENT

Typical Application Circuits

Figure $17(\mathrm{a}) .500 \mathrm{kHz} 12 \mathrm{~V}$ to 5 V and 0.8 V step-down converter. Notice that $\mathrm{V}_{\text {out }}$ is lower than the nominal FB voltage. R_{11} and R_{12} constitute the feedback voltage divider for Channel 2.

Figure $17\left(\right.$ b). V_{IN} Start-up Transient $\left(\mathrm{I}_{\text {out } 1}=\mathrm{I}_{\text {OUT2 }}=1.5 \mathrm{~A}\right)$.

Upper Trace: OUT2 Voltage, 0.1V/div Middle Trace : SS2 Voltage, 1V/div Lower Trace : $\mathrm{I}_{\mathrm{L} 2}$, 2A/div

Figure 17(c). Channel 2 Output Short-circuit Hiccup.

POWER MANAGEMENT

Typical Application Circuits

Figure $18(\mathrm{a}) .350 \mathrm{kHz} 12 \mathrm{~V}-30 \mathrm{~V}$ Input to 5 V and 1.5 V Step-down Converter. Notice that Channel 2 is bootstrapped from OUT1. Channel 2 will be held off if OUT1 voltage is below 90% of its set value.

Figure 18 (b). Switching Waveforms. $I_{\text {OUT1 }}=I_{\text {out } 2}=1 \mathrm{~A}$.

POWER MANAGEMENT

Outline Drawing - SOIC-16 EDP

Land Pattern - SOIC-16 EDP

Contact Information

Semtech Corporation

Power Management Products Division
200 Flynn Road, Camarillo, CA 93012-8790
Phone: (805)498-2111 FAX (805)498-3804

